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Heat diffusion and banding in rapid solidification

Massimo Conti
Dipartimento di Matematica e Fisica, Universita´ di Camerino and Istituto Nazionale di Fisica della Materia, 62032 Camerino, Italy

~Received 23 June 1998!

The banded structuresobserved in rapidly solidified alloys originate from an oscillatory dynamics of the
solidification front, driven by loss of interfacial equilibrium. To study the formation of these structures, we
simulate the rapid directional solidification of a binary alloy with the phase-field model, accounting for both
thermal and solute diffusion. We find that the growth process is strongly affected by the interface heating due
to the release of latent heat. The interface stability is increased with decreasing the thermal diffusivityDT ,
until the oscillatory behavior is suppressed and steady growth occurs. In this respect our results agree with the
numerical study of Karma and Sarkissian, based on the diffusional free-boundary model@A. Karma and A.
Sarkissian, Phys. Rev. Lett.27, 2616 ~1992!#. We detect also some deviations whose origin is analyzed and
discussed.@S1063-651X~98!03311-X#

PACS number~s!: 81.10.Aj, 05.70.Ln, 64.70.Dv
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I. INTRODUCTION

Rapid directional solidification allows us to produce a ri
variety of metastable phases and microstructures. One o
most interesting effects is the formation, at growth rates n
the absolute stability limit, of the so-calledbanded struc-
tures. These structures, observed in various aluminum-ba
alloys obtained using different techniques, consist of al
nating light and dark bands lying parallel to the solidificati
front. The dark bands exhibit a cellular-dendritic or eutec
structure, while the light bands correspond to mic
segregation-free regions. The total band spacing ranges
0.3 to 1.5mm @1–5#. The physical origin of the banded stru
tures posed an intriguing problem to the scientific comm
nity, as they were not expected within the classic Mullin
Sekerka analysis@6#; however, very soon it was realized th
departures from local interface equilibrium, neglected in t
former approach, could result in a richer behavior of t
dynamics of the moving interface. The linear stability ana
sis of the free-boundary diffusional model was first modifi
by Coriell and Sekerka@7#, who accounted for nonequilib
rium solute segregation~‘‘solute trapping’’! via a velocity-
dependent partition coefficientk(v), defined as the ratio
cs /cl of the solute concentration in the growing solid to th
in the liquid at the interface. Merchant and Davis@8# refined
this approach: incorporating into the problem the results
the continuous growth model of Aziz and Kaplan@9#, they
accounted for both solute trapping and the kinetic underc
ing of the moving interface, allowing the segregation coe
cient k and the interface temperatureTI to depend on the
interface velocityv in a thermodynamically consistent wa
Along these lines a new oscillatory instability was identifie
characterized by an infinite wavelength along the solid-liq
front; it was argued that this instability should drive the i
terface dynamics into a nonlinear regime characterized
large oscillations of the interface velocity, reflecting in pe
odic variations of the solute concentration along the grow
direction.

Based on the notion that heat diffusion is much faster t
solute diffusion, the above studies used the froz
temperature approximation, which assumes a uniform t
PRE 581063-651X/98/58~5!/6166~7!/$15.00
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perature gradient, neglecting the latent heat released a
solid-liquid interface. A better understanding of the role
thermal diffusion on the banding phenomena required an
tension of the linear stability analysis, which was perform
by Huntley and Davis@10#. Karma and Sarkissian@11,12#
put further emphasis on this point; in their numerical stud
conducted with the Green’s-function technique, the pict
of the growth process turned out to be strongly altered by
latent heat diffusion. They observed a reduction of the
rameters range where the banded structure should occur
a restabilization effect at zero wave number. Moreover,
interface dynamics turned out to be quite insensitive to
external temperature gradientG while, neglecting thermal
effects, the band spacing should scale asG21. Due to the
difficulties of evaluating the thermal gradient along t
banded structure, no experimental confirmation is availa
on this point.

All the previous studies addressed the solidification p
cess within the free-boundary diffusional model, imposi
on the moving interface boundary conditions derived throu
a separate modelization of the interface kinetics. Notice t
these conditions, based on the results of the continu
growth model, are strictly valid for steady growth@9#, and
could fail to work during the fast transients characteristic
the banding phenomena. A different approach to investig
the full time-dependent interface dynamics which underl
the bands formation is provided by the phase-field mod
Within this method a phase fieldf(x,t) characterizes the
phase of the system at each point. A free-energy~or entropy!
functional is then constructed that depends onf as well as
on the temperature and concentration fieldsT,c;a(“f)2

term accounts for the energy cost associated to the so
liquid interface. The extremization of the functional with r
spect to these variables results in the dynamic equations
the process. The model incorporates in a natural fashion n
equilibrium effects as solute trapping and the kinetic und
cooling of the moving interface and was previously utiliz
to simulate the interface dynamics in the frozen-tempera
approximation@13,14#.

In the present paper the phase-field model will be utiliz
to investigate the effects of thermal diffusion on the form
6166 © 1998 The American Physical Society
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PRE 58 6167HEAT DIFFUSION AND BANDING IN RAPID . . .
tion of solute bands. Our results agree in many respects
the picture of the process given by previous studies@10–12#
based on the free-boundary formulation of the problem:
interface stability increases with decreasing the thermal
fusivity DT , until the formation of solute bands is sup
pressed. However, we detected also some discrepancies
ing the fast transients of the process the interface dynam
deviates, to some extent, from the steady-state prediction
the continuous growth model. Moreover, in our study t
characteristic thermal length is larger than the system len
as a consequence, the interface heating due to the latent
release differs from the estimations of Karma and Sarkiss
@11,12# and the band spacing scales asG21.

The paper is organized as follows. In Sec. II the gove
ing equations of the model will be derived, through the e
tremization of an entropy functional. In Sec. III some deta
of the numerical method will be given, and in Sec. IV t
results of the numerical simulations will be presented a
discussed. The conclusions will follow in Sec. V.

II. THE PHASE-FIELD MODEL

The directional solidification of an ideal solution of com
ponentsA ~solvent! and B ~solute! is described in terms o
the scalar phase fieldf, the local solute concentrationc, and
temperatureT. The field f is an order parameter assumin
the valuesf50 in the solid andf51 in the liquid; inter-
mediate values correspond to the interface between the
phases. The model is developed along the lines suggeste
Penrose and Fife@15# and successively followed by Wan
et al. @16#, Warren and Boettinger@17#, and Conti@18,19#; it
incorporates also many of the ideas developed by Cagi
and Xie @20#, Caginalp and Jones@21#, and Wheeleret al.
@22,23#. Full details of the derivation are presented elsewh
@14,19#, and for the sake of conciseness we shall give be
only a short review. As a starting point the entropy of t
system is written as

S5E Fs~e,f,c!2
e2

2
u¹fu2Gdv, ~1!

where integration is performed over the system volume;
last term in the integrand is a gradient correction to the th
modynamic entropy densitys, which depends on the interna
energy densitye and on the concentration and phase fie
through the thermodynamic relations:

]s

]e
5

1

T
,

]s

]c
5

mA2mB

T
,

~2!
]s

]f
52

1

T

]

]f
@~12c!mA1cmB#,

wheremA andmB are the chemical potentials of the solve
and the solute, respectively. Conservation laws govern b
solute and energy transport:

ċ52“•Jc , ~3!
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To ensure that the local entropy production is always po
tive, the solute and energy fluxes can be written in a sim
form as

Jc5Mc“
dS
dc

, ~5!

Je5Me“
dS
de

, ~6!

while the nonconserved dynamics of the phase fieldf is
expressed through

ḟ5Mf

dS
df

, ~7!

whereMc , Me , andMf are positive constants.
Assuming a double well Ginzburg-Landau free energy

the pure constituents, and evaluating the functional der
tives, gives

]f

]t
5Mf@e2

“

2f2~12c!H̃A~f,T!2cH̃B~f,T!#, ~8!

]c

]t
52“•H Dcc~12c!

vm

R
@H̃A~f,T!2H̃B~f,T!#“f

2Dc“c1Dcc~12c!
vm

R
G̃~f,T!“TJ , ~9!

]T

]t
5DT“

2T2
1

x
@~12c!LA1cLB#

dp~f!

df

]f

]t
2

1

x
p~f!

3~LB2LA!
]c

]t
. ~10!

In Eqs. ~8!–~10!, R is the gas constant andvm is the molar
volume; the solute diffusivity is defined asDc
5(McR)/@vmc(12c)# and the thermal diffusivity asDT
5Me /(xT2), x being the specific heat, for which we assum
equal values for both components in both phases. The fu
tion H̃A(f,T) is defined as

H̃A~f,T!5
dGA~f!

df
2

dp~f!

df
LA

T2TA

TTA , ~11!

where

GA~f!5 1
4 W̃Af2~12f!25W̃Ag~f! ~12!

is a symmetric double-well potential with equal minima
f50 and 1, scaled by the positive well heightW̃A; LA and
TA are the latent heat per unit volume and the melting te
perature of the pure component pureA; choosing the func-
tion p(f) as p(f)5f3(10215f16f2), the condition is
enforced that bulk solid and liquid are described byf50
and 1, respectively, for every value of temperature@16#.

Equations ~11! and ~12! still hold for H̃B(f,T) and
GB(f) if all the material parameters, labeled with the sup
script A, are replaced with the ones related to theB species.
The functionG̃(f,T) is defined as
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G̃~f,T!52
p~f!

T2 ~LA2LB!. ~13!

To allow for different diffusivities in the solid and liquid
phases, in the followingDc will be taken as Dc5Ds
1p(f)(Dl2Ds), and Dl and Ds being the diffusivities in
the liquid and in the solid, respectively.
e

.
l

c

th

e

Equations~8!–~10! will be rephrased scaling lengths t
some reference lengthj and time toj2/Dl . Allowing Mf to
depend on the local composition asMf5(12c)Mf

A

1cMf
B , and following the lines suggested by Warren a

Boettinger@17# to associate the model parameters to the m
terial properties, the governing equations become
]f

]t
5@~12c!mA1cmB#@“2f1~12c!QA~T,f!1cQB~T,f!#, ~14!

]c

]t
5“•$l~f!“c2c~12c!l~f!@HA~f,T!2HB~f,T!#“f2c~12c!l~f!G~f,T!“T%, ~15!

]T

]t
5

1

Le
“

2T2
1

x
@~12c!LA1cLB#

dp~f!

df

]f

]t
2

1

x
p~f!~LB2LA!

]c

]t
, ~16!
n
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where Le is the Lewis number, defined as Le5Dl /DT , and

HA,B~f,T!5WA,B
dg~f!

df
2LA,B

vm

R

dp~f!

df

T2TA,B

TTA,B

5
vm

R
H̃A,B~f,T!, ~17!

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6&

j2LA,B

sA,BhA,B

T2TA,B

T̄I

dp~f!

df
, ~18!

G~f,T!5
vm

R
G̃~f,T!, ~19!

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D . ~20!

In Eq. ~18!, sA,B,hA,B indicate the surface tension and th
interface thickness of the pure componentsA andB, respec-
tively; T̄I is the initial ~equilibrium! interface temperature
The model parametersmA,B,WA,B depend on the physica
properties of the alloy components through

mA,B5
bA,BsA,BTA,B

DlL
A,B , WA,B5

12

&

vm

R

sA,B

TA,BhA,B , ~21!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, which relates the interface undercooling to the interfa
velocity v throughv5bA,B(TA,B2TI).

To conduct the numerical simulations we referred to
phase diagram of an ideal solution of nickel~solvent! and
copper~solute!, using the data summarized in Table I; th
solute diffusivity in the solid phase was estimated asDs
51026Dl . The length scale was fixed atj52.131024
e

e

cm; the kinetic undercooling coefficients were fixed tobA

5128.64 cm s21 K21 and bB5153.60 cm s21 K21, not far
from the actual best estimates@24# and a realistic value for
the interface thickness was selected as 1.6831027 cm. Us-
ing the above values it resultsWA50.963,WB50.960, and
mA5mB5350.

III. THE NUMERICAL METHOD

The evolution of Eqs.~14!–~16! has been considered i
one spatial dimension, in the domain 0<x<xm , with xm
59.6. At the domain’s boundaries we imposed fluxless c
ditions for the phase and concentration fields and directio
solidification conditions for the thermal field, via

F]T

]t G
x50;x5xm

52V0G, ~22!

whereG is the external temperature gradient andV0 is the
isotherm velocity. The initial temperature profile was defin
as

T~x,0!5T̄I1G~x2x0! ~23!

with a phase boundary at temperatureT̄I separating the solid
region ~x,x0 , f50! and the liquid region~x.x0 , f51!.
The initial solute concentration was set to the equilibriu
values in the two phases. To discretize the equations sec

TABLE I. Material parameters for the Ni-Cu alloy.

Nickel Copper

Tm ~K! 1728 1358
L ~J/cm3! 2350 1728
vm ~cm3/mol!a 7.0 7.8
s ~J/cm2! 3.731025 2.931025

Dl ~cm2/s! 1025 1025

aAn average value of 7.4 has been taken.



p
a
n
w

d.
on
.0
n

-

gr

e
t
s

st
-

ty
r:

r

to
lit
io
e
tr

t
d

er

C
rm
rt
r

th
n

gt
ze
o
ia
c
n

is

re

o
ag
e
r

PRE 58 6169HEAT DIFFUSION AND BANDING IN RAPID . . .
order in space and first order in time, finite-difference a
proximations were utilized. Then, an explicit scheme w
employed to advance forward in time the phase field a
concentration equations; the linear temperature equation
more conveniently integrated with a fully implicit metho
To ensure an accurate spatial resolution, the computati
domain was divided into two parts; in an inner region, (4
<x<5.6) concerned with the evolution of the phase a
concentration fields, the grid spacing was selected asDxi
5431024, which is one-half the nominal interface thick
ness; in the outer region~0<x<4.0; 5.6<x<9.6! only the
more diffuse temperature field changes with time; here a
spacing Dx0510Dxi was utilized. A time stepDt52
310210 was required for numerical stability. To verify th
consistency of the numerical scheme, at each time step
solute conservation was checked and in all the simulation
was verified within 0.001%.

IV. NUMERICAL RESULTS

The solidification process is characterized by the con
tutional lawsTI(v),k(v) which relate the interface tempera
ture and the partition coefficient to the interface veloci
The steadyTI(v) curve exhibits a nonmonotonic behavio
due to suppression of solute partitioning~and to the reduc-
tion of solute concentration on the liquid side of the inte
face!, at low velocitiesTI(v) first rises, then falls with in-
creasingv reflecting the increasing undercooling required
advance the solidification front. The loss of interface stabi
is expected when the isotherm velocity is fixed in the reg
of positive slope of theTI(v) curve, corresponding to th
unstable planar growth branch. Setting the solute concen
tion in the liquid phase atc1`50.070 68,TI(v) reaches its
maximum atv51350@13# ~here and in the following, excep
for temperatures, physical quantities will be expressed in
mensionless units!. Then we chose an isotherm velocityV0
5700, well inside the unstable branch; the external temp
ture gradient was fixed atG540 K.

The high value of the Lewis number (Le5531025) pre-
vents the formation of the banded structures in the Ni-
alloy, forcing steady growth for every value of the isothe
velocity or the external temperature gradient. Then we a
ficially altered the thermal diffusivity of the alloy by a facto
;102, entering the region where the crossover from
steady to the oscillatory dynamics of the solidification fro
can be studied. With this choice the thermal diffusion len
1/(LeV0) turns out to be much larger than the domain’s si
in this respect our simulations explore the opposite limit
the growth conditions studied by Karma and Sarkiss
@11,12#, who assumed an infinite domain. Notice that in a
tual rapid solidification experiments the domain’s size a
the thermal diffusion length are of the same order@3#.

The effect of heat diffusion on the growth dynamics
shown in Figs. 1~a!–1~c!, where plots of interface velocity
and temperature versus time are presented for three diffe
values of the Lewis number. Figure 1~a! refers to the frozen
temperature approximation (Le50,DT5`); after a short
transient the initial conditions are reabsorbed and the fr
velocity enters an oscillatory regime around the aver
value V0 . Most of the time is spent at low velocity, wher
v,V0 and the interface cools down. The high velocity po
-
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FIG. 1. Interface velocity~dotted line! and temperature~solid
line! versus time. The Lewis number is~a! Le50, ~b! Le56.65
31028, and ~c! Le53.1231027. The isotherm velocity isV0

5700 and the temperature gradientG540 K.
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6170 PRE 58MASSIMO CONTI
tion of the cycle (v.V0) occurs on a much shorter tim
scale, marked by the sharp peaks of thev(t) curve. In Fig.
1~b!, the Lewis number is Le56.6531028; the finite ther-
mal diffusivity is reflected in the decrease of the maximu
velocity reached during the fast growth stage. A much m
dramatical effect is observed in Fig. 1~c!, where Le53.12
31027: the amplitude of the oscillations decreases w
time, until an asymptotical steady regime is reached.

The origin of this effect can be understood looking at F
2, where we have compared the orbits described by the
tem in the (TI ,v) plane with different values of the Lewi
number~increasing in the order 1–6!. The vertical line indi-
cates the isotherm velocityV05700; on the same graph th
dashed line is the steadyTI(v) curve. Curve 1 refers to the
frozen temperature approximation; for most of the cycle
interface velocity is lower thanV0 and the interface cools
down; then the orbit traverses the steadyTI(v) curve at point
A and with a strong acceleration reaches pointB on the stable
branch. Here the interface velocity is much higher thanV0
and the interface warms up; solidification is decelerated
the operating point shifts toC. When the frozen temperatur
approximation is relaxed, the excess of latent heat releas
the interface during acceleration has to be removed thro
thermal diffusion; the mechanism becomes less effec
with decreasing the thermal diffusivityDT , reflecting in an
increased temperature of the interface. The effect is cle
recognizable in curves from 2 to 5, where the slope of
TI(v) trajectories increases upwards during acceleration w
increasing the Lewis number. Correspondingly, the opera
point on the stable branch shifts fromB and approaches th
maximum of the steadyTI(v) curve. When Le53.12
31027 the trajectory~curve 6! no longer reaches the stab
branch, and collapses into a single point at velocityV0 .

The quantitative effects of the latent heat diffusion can

FIG. 2. Cycles described by the process in the (TI ,v) plane.
The curves refer to increasing values of the Lewis number: in
order 1 to 6 we have Le50, 1.6531028, 3.3031028, 6.60
31028, 1.6531027, and 3.1231027, respectively. The isotherm
velocity is V05700 and the temperature gradientG540 K. The
vertical line indicates the isotherm velocityV0 ; the meaning of
pointsA,B,C is illustrated in the text.
e
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assessed through a simple argument. As we previously m
tioned, in our system the thermal diffusion length is mu
larger than the domain’s size. Then, assuming linear te
perature profiles, energy conservation at the interface
quires

TI2T1

xI
5

T22TI

xm2xI
1

L

x
vLe, ~24!

whereT15T(x50;t), T25T(x5xm ;t), andxI is thex co-
ordinate of the solidification front. The latent heat of th
alloy is indicated here withL. After a simple manipulation
Eq. ~24! gives the interface temperature as

TI5
1

xm
@T1~xm2xI !1T2xI #1

xI~xm2xI !

xm

L

x
vLe.

~25!

The first term on the right-hand side of Eq.~25! gives the
contribution toTI due to the external temperature profile; t
second term is the overheating due to the latent heat rele
at the interface. We observe in Fig. 2 that a temperature ju
of a few tenths of a degree during the accelerating part of
cycle is enough to prevent a stable oscillatory regime. As
our systemxI(xm2xI)/xm;xm/4 andv;103, we see from
Eq. ~25! that the crossover between the oscillatory and
steady regime should be expected with the Lewis num
ranging from 131027 to 531027. To verify the consistency
of the above arguments, in Fig. 3 we represent versus t
the actual interface temperature~solid line! and the estima-
tion given by Eq.~25! ~dashed line!. For clarity we omitted
the initial transient. It can be observed that the agreem
between the two curves is quite satisfactory. We note a
that the latent heat contribution to the interface heating sc
approximately as;xmLe; then we expect that the interfac
dynamics should depend on the thermal diffusivity and
system size only through the productxmLe. This suggestion
is confirmed in Fig. 4, where the solid line represents

e

FIG. 3. Interface temperature versus time~solid line!. The
dashed line is drawn using the estimation given by Eq.~25!. The
isotherm velocity isV05700 and the temperature gradientG
540 K. The Lewis number is Le51.6531027.
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time variation of the interface velocity for Le52.531027;
the dashed line is drawn for Le5231027. In both cases
xmLe524; we can observe that the two curves are alm
indistinguishable.

Karma and Sarkissian@11,12#, considering an infinite do-
main, found that the growth process is essentially driven
the interface overheating caused by the release of latent
and is almost independent of the external temperature gr
ent. In contrast, in the frozen temperature approximati
estimates based on the continuous growth model indi
that the oscillation frequency should scale as;G and the
band spacing as;G21. Due to the small domain’s size, i
our simulations the interface temperature is very sensitiv

FIG. 5. Effect of the external gradientG on the cycles described
by the process in the (TI ,v) plane. Curve~a!: G510 K; curve~b!
is drawn forG540 K. The Lewis number is Le51.6531027 and
the isotherm velocity isV05700.

FIG. 4. Interface velocity versus time, for two different valu
of the Lewis number and the domain’s size. Solid line: Le52.5
31027; the dashed line is drawn for Le5231027. In both cases
xmLe524; The isotherm velocity isV05700 and the temperatur
gradientG540 K.
st

y
at,

di-
,
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to

the boundary conditions imposed at the domain’s walls, a
the external gradient plays a central role in controlling t
interface dynamics. In Fig. 5 we show, in theT,v plane, the
cycles computed withG510 K ~curve a! and G540 K
~curveb!. The larger slope of curveb during the acceleration
period indicates that the motion in the external gradient c
tributes to a large extent to the heating of the interface; a
consequence the amplitude of the oscillations decreases
increasingG. In Fig. 6 the oscillation frequencyv is repre-
sented versusG; we observe thatv is an increasing function
of G, and at low frequencies scales approximately as;G.

The low frequency of the oscillations for small values
G accounts for the fact that during the high velocity secti
of the cycle the trajectory~a! in Fig. 5 follows very closely
the steadyTI(v) curve. As the solute relaxation across t
interface is not instantaneous, at high frequency the ste
approximation fails to work@curve~b!#. This issue has been
discussed in more detail elsewhere@14#.

FIG. 6. Oscillation frequency versus the external gradientG.
The Lewis number is Le51.6531027 and the isotherm velocity is
V05700.

FIG. 7. Solute concentration profile along the growth directio
The isotherm velocity isV05700, and the temperature gradient
G540 K. The Lewis number is Le51.6531027.
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6172 PRE 58MASSIMO CONTI
In Fig. 7 the concentration profile is shown forG
540 K, Le51.6531027. We observe that the oscillator
dynamics of the solidification front is reflected in a period
structure of the solidified alloy. The wavelength of th
banded structure has been estimated asl50.0720, which is
practically coincident with the expected value 2pV0 /v
50.0721.

V. CONCLUSIONS

In summary, we addressed rapid directional solidificat
using a phase-field model which accounts for both solute
thermal diffusion. In a region of the parameters space,
interface dynamics enters an oscillatory regime character
by periodic variations of the growth rate. The growth proce
is strongly affected by the interface heating due to the rele
z,

r.

B

z,
n
d
e

ed
s
se

of latent heat. According to previous results based on
free-boundary model, the interface stability is increased w
decreasing the thermal diffusivityDT , until the oscillatory
behavior is suppressed and steady growth occurs. When
thermal diffusion length is much larger than the domain
size, the interface heating differs from the estimations
Karma and Sarkissian@11,12#: in this limit the role of the
external temperature gradient cannot be neglected and
oscillation frequency scales as;G. At low frequency, the
interface conditions provided by the continuous grow
model describe to a good degree of accuracy the actua
terface dynamics; at high frequency, due to the fast transi
involved, these conditions no longer work, and the results
the phase-field simulations deviate, to some extent, from
predictions of the free-boundary model.
R.

ys.

ys.

ev.
@1# M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall.37,
3305 ~1989!.

@2# M. Zimmermann, M. Carrard, M. Gremaud, and W. Kur
Mater. Sci. Eng., A134, 1278~1991!.

@3# M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mate
39, 1431~1991!.

@4# W. J. Boettinger, D. Shechtman, R. J. Schaefer, and F. S.
ancaniello, Metall. Trans. A15, 55 ~1984!.

@5# M. Carrard, M. Gremaud, M. Zimmermann, and W. Kur
Acta Metall. Mater.40, 983 ~1992!.

@6# W. W. Mullins and R. F. Sekerka, J. Appl. Phys.35, 444
~1964!.

@7# S. R. Coriell and R. F. Sekerka, J. Cryst. Growth61, 499
~1983!.

@8# G. J. Merchant and S. H. Davis, Acta Metall. Mater.38, 2683
~1990!.

@9# M. J. Aziz and T. Kaplan, Acta Metall.36, 2335~1988!.
@10# D. A. Huntley and S. H. Davis, Acta Metall. Mater.41, 2025

~1993!.
@11# A. Karma and A. Sarkissian, Phys. Rev. Lett.27, 2616~1992!.
i-

@12# A. Karma and A. Sarkissian, Phys. Rev. E47, 513 ~1993!.
@13# M. Conti, Phys. Rev. E56, R6267~1997!.
@14# M. Conti ~unpublished!.
@15# O. Penrose and P. C. Fife, Physica D43, 44 ~1990!.
@16# S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S.

Coriell, R. J. Braun, and G. B. McFadden, Physica D69, 189
~1993!.

@17# J. A. Warren and W. J. Boettinger, Acta Metall. Mater.43, 689
~1995!.

@18# M. Conti, Phys. Rev. E55, 701 ~1997!.
@19# M. Conti, Phys. Rev. E55, 765 ~1997!.
@20# G. Caginalp and W. Xie, Phys. Rev. E48, 1897~1993!.
@21# G. Caginalp and J. Jones, Ann. Phys.~N.Y.! 237, 66 ~1995!.
@22# A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Ph

Rev. A 45, 7424~1992!.
@23# A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Ph

Rev. E47, 1893~1993!.
@24# R. Willnecker, D. M. Herlach, and B. Feuerbacher, Phys. R

Lett. 62, 2707~1989!.


