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Heat diffusion and banding in rapid solidification

Massimo Conti
Dipartimento di Matematica e Fisica, Universiti Camerino and Istituto Nazionale di Fisica della Materia, 62032 Camerino, Italy
(Received 23 June 1998

The banded structuresbserved in rapidly solidified alloys originate from an oscillatory dynamics of the
solidification front, driven by loss of interfacial equilibrium. To study the formation of these structures, we
simulate the rapid directional solidification of a binary alloy with the phase-field model, accounting for both
thermal and solute diffusion. We find that the growth process is strongly affected by the interface heating due
to the release of latent heat. The interface stability is increased with decreasing the thermal diffugivity
until the oscillatory behavior is suppressed and steady growth occurs. In this respect our results agree with the
numerical study of Karma and Sarkissian, based on the diffusional free-boundary [fAodk@drma and A.
Sarkissian, Phys. Rev. Le7, 2616(1992]. We detect also some deviations whose origin is analyzed and
discussed[S1063-651%98)03311-X]

PACS numbg(s): 81.10.Aj, 05.70.Ln, 64.70.Dv

[. INTRODUCTION perature gradient, neglecting the latent heat released at the
solid-liquid interface. A better understanding of the role of
Rapid directional solidification allows us to produce a richthermal diffusion on the banding phenomena required an ex-
variety of metastable phases and microstructures. One of thension of the linear stability analysis, which was performed
most interesting effects is the formation, at growth rates neaby Huntley and David10]. Karma and Sarkissiafl1,12]
the absolute stability limit, of the so-calldohnded struc- put further emphasis on this point; in their numerical study,
tures These structures, observed in various aluminum-basecbnducted with the Green’s-function technique, the picture
alloys obtained using different techniques, consist of alterof the growth process turned out to be strongly altered by the
nating light and dark bands lying parallel to the solidification latent heat diffusion. They observed a reduction of the pa-
front. The dark bands exhibit a cellular-dendritic or eutecticrameters range where the banded structure should occur and
structure, while the light bands correspond to micro-a restabilization effect at zero wave number. Moreover, the
segregation-free regions. The total band spacing ranges fromterface dynamics turned out to be quite insensitive to the
0.3 to 1.5um [1-5]. The physical origin of the banded struc- external temperature gradie@® while, neglecting thermal
tures posed an intriguing problem to the scientific commu-effects, the band spacing should scaleGas'. Due to the
nity, as they were not expected within the classic Mullins-difficulties of evaluating the thermal gradient along the
Sekerka analysif6]; however, very soon it was realized that banded structure, no experimental confirmation is available
departures from local interface equilibrium, neglected in thison this point.
former approach, could result in a richer behavior of the All the previous studies addressed the solidification pro-
dynamics of the moving interface. The linear stability analy-cess within the free-boundary diffusional model, imposing
sis of the free-boundary diffusional model was first modifiedon the moving interface boundary conditions derived through
by Coriell and Sekerk@7], who accounted for nonequilib- a separate modelization of the interface kinetics. Notice that
rium solute segregatiofi‘'solute trapping”) via a velocity- these conditions, based on the results of the continuous
dependent partition coefficierk(v), defined as the ratio growth model, are strictly valid for steady growffi], and
cs/c, of the solute concentration in the growing solid to thatcould fail to work during the fast transients characteristic of
in the liquid at the interface. Merchant and Dap@§ refined  the banding phenomena. A different approach to investigate
this approach: incorporating into the problem the results othe full time-dependent interface dynamics which underlies
the continuous growth model of Aziz and Kaplg@l, they  the bands formation is provided by the phase-field model.
accounted for both solute trapping and the kinetic undercoolwithin this method a phase fielé(x,t) characterizes the
ing of the moving interface, allowing the segregation coeffi-phase of the system at each point. A free-enéagyentropy
cient k and the interface temperatufie to depend on the functional is then constructed that depends¢pas well as
interface velocityv in a thermodynamically consistent way. on the temperature and concentration fieltis;a(V ¢)?
Along these lines a new oscillatory instability was identified,term accounts for the energy cost associated to the solid-
characterized by an infinite wavelength along the solid-liquidliquid interface. The extremization of the functional with re-
front; it was argued that this instability should drive the in- spect to these variables results in the dynamic equations for
terface dynamics into a nonlinear regime characterized bthe process. The model incorporates in a natural fashion non-
large oscillations of the interface velocity, reflecting in peri- equilibrium effects as solute trapping and the kinetic under-
odic variations of the solute concentration along the growtlcooling of the moving interface and was previously utilized
direction. to simulate the interface dynamics in the frozen-temperature
Based on the notion that heat diffusion is much faster thampproximation13,14].
solute diffusion, the above studies used the frozen- Inthe present paper the phase-field model will be utilized
temperature approximation, which assumes a uniform temto investigate the effects of thermal diffusion on the forma-
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tion of solute bands. Our results agree in many respects witfio ensure that the local entropy production is always posi-
the picture of the process given by previous stufliés-12  tive, the solute and energy fluxes can be written in a simple
based on the free-boundary formulation of the problem: thdorm as
interface stability increases with decreasing the thermal dif-
fusivity Dy, until the formation of solute bands is sup- J=M.V 5_5 (5)
pressed. However, we detected also some discrepancies: dur- ¢ éc’
ing the fast transients of the process the interface dynamics
deviates, to some extent, from the steady-state predictions of 6S
the continuous growth model. Moreover, in our study the Je=McV Se’ ©
characteristic thermal length is larger than the system length;
as a consequence, the interface heating due to the latent hedtile the nonconserved dynamics of the phase figlis
release differs from the estimations of Karma and Sarkissiaexpressed through
[11,17 and the band spacing scales@s?.

The paper is organized as follows. In Sec. Il the govern- o oS
ing equations of the model will be derived, through the ex- ¢=My 54’ @)
tremization of an entropy functional. In Sec. Ill some details
of the numerical method will be given, and in Sec. IV thewhereM., M., andM 4 are positive constants.
results of the numerical simulations will be presented and Assuming a double well Ginzburg-Landau free energy for

discussed. The conclusions will follow in Sec. V. the pure constituents, and evaluating the functional deriva-
tives, gives
Il. THE PHASE-FIELD MODEL i

o7 292 1 (1 _ A _~HB
The directional solidification of an ideal solution of com- at My[eVep—(1-c)H (¢, T)—cH (¢, T)], (8)

ponentsA (solven} and B (solute is described in terms of

the scalar phase field, the local solute concentratian and Jc Um =~ ~5
temperatureT. The field ¢ is an order parameter assuming 5 — —V-iDce(l-c) rR [H(¢.T)—H*(¢, )]V
the values¢$=0 in the solid and$=1 in the liquid; inter-
mediate values correspond to the interface between the two
phases. The model is developed along the lines suggested by
Penrose and Fif¢l5] and successively followed by Wang

et al.[16], Warren and Boettingdd 7], and Conti18,19; it JoT , A 5 dp(®) 9 1
incorporates also many of the ideas developed by Caginalp~=DrV*T—— [(1 c)L+cL”] Tdé ot x p()
and Xie[20], Caginalp and Jong1], and Wheeleret al.

[22,23. Full details of the derivation are presented elsewhere

[14,19, and for the sake of conciseness we shall give below X(LB—LA) e (10

~D.Vc+Dc(1-c) Uﬁmf(</>,T)VT , ©)

62
S(e,(ﬁ,C)_?lV(Mz dl), (1)

only a short review. As a starting point the entropy of the

system is written as In Egs.(8)—(10), R is the gas constant and, is the molar
volume; the solute diffusivity is defined asD,

S_f =(M.R)/[vnc(1—c)] and the thermal diffusivity aD+
B =M./(xT?), x being the specific heat, for which we assume

equal values for both components in both phases. The func-

where integration is performed over the system volume; théion HA(¢,T) is defined as

last term in the integrand is a gradient correction to the ther-

modynamic entropy density which depends on the internal ~ A dGA(¢) dp(¢) ,T-T*

energy densitye and on the concentration and phase fields HY(¢.T)= d¢ d¢ L TTA 1D
through the thermodynamic relations:
where
os_1 os_plopf A 1A 42 2_ A
% T g T G(¢)=zW"$*(1-#)*=W"g(¢) (12
(2) is a symmetric double-well potential with equal minima at
s 14 ¢=0 and 1, scaled by the positive well height*; L* and

—=—=—[(1—c)u"+cuB], : :
do T d¢ L( s w1l TA are the latent heat per unit volume and the melting tem-
perature of the pure component pukgchoosing the func-
whereu” and uB are the chemical potentials of the solventtion p(¢$) as p(¢)= ¢3(10—15¢+6¢2), the condition is

and the solute, respectively. Conservation laws govern botenforced that bulk solid and liquid are described ¢y 0

solute and energy transport: and 1, respectively, for every value of temperatiiré.
_ Equations (11) and (12) still hold for HE(4,T) and
c=-V-J., 3 GB(¢) if all the material parameters, labeled with the super-

scriptA, are replaced with the ones related to Biepecies.
e=—-V-J.. (4)  The function['(¢,T) is defined as
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p(¢)

T(¢,T)=— " (LA-LE). (13)

To allow for different diffusivities in the solid and liquid

phases, in the followingD. will be taken asD.=Dg
+p(¢)(D,—Dg), andD; and Dy being the diffusivities in
the liquid and in the solid, respectively.
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Equations(8)—(10) will be rephrased scaling lengths to
some reference lengthand time to£?/D, . Allowing M, to
depend on the local composition aM¢=(1—c)M2
+C|\/|2, and following the lines suggested by Warren and
Boettinger{17] to associate the model parameters to the ma-
terial properties, the governing equations become

%:[(1—c)mA+cmB][V2¢+(1—C)QA(T,¢)+CQB(T,¢)I (14
J
(9—(;=V~{)\(¢>)Vc—c(l—c))\(¢)[HA(¢,T)—HB(¢,T)]V¢—C(l—C)?\(¢)F(¢yT)VT}7 (15)
aT 1 1 dp(¢) d¢ 1 gc
E:L_GVZT_;[(]-_C)LA‘FCLB]Wﬁ_;p(qs)(LB_LA) o (16)

where Le is the Lewis number, defined as=lB, /D, and

HAB(p, T)=WAB M_ LAB v dp(¢) T—TAB

d¢ R d¢ TTAB
=2 R4, @
& dg(¢)
A,B - > %
Q™(¢,T) (52 dg

1 gZLA,B T_TA,B dp(¢)

+ 6v2 oABhAB T do (18

F(6.T)= 2 T(e.T), (19
D, D,

>\(¢)=E+p(¢)<l—a- (20

In Eq. (18), B ,hAB indicate the surface tension and the

interface thickness of the pure componeatandB, respec-

tively; T, is the initial (equilibrium) interface temperature.
The model parametens™® WAB depend on the physical

properties of the alloy components through

ﬂABUABTAB

12vy B

AB__ "M -~
‘/2 R TA,BhA,B ’

mAB= (21)

where 8B is the kinetic undercooling coefficient of pufe

or B, which relates the interface undercooling to the interface

velocity v throughv = gAB(TAB-T)).

To conduct the numerical simulations we referred to the

phase diagram of an ideal solution of nicksblvenj and

copper(solute, using the data summarized in Table I; the

solute diffusivity in the solid phase was estimated s
=10"5D,. The length scale was fixed &t=2.1x10*

cm; the kinetic undercooling coefficients were fixed 36
=128.64cms*K ™! and B8=153.60 cm s K™%, not far
from the actual best estimatg®4] and a realistic value for
the interface thickness was selected as .68 ' cm. Us-
ing the above values it resul&”=0.963, W=0.960, and
mA=mB=2350.

IIl. THE NUMERICAL METHOD

The evolution of Eqs(14)—(16) has been considered in
one spatial dimension, in the domain<@<x,,, with X,
=9.6. At the domain’s boundaries we imposed fluxless con-
ditions for the phase and concentration fields and directional
solidification conditions for the thermal field, via

aT
ot

:_VoG,

x:O;x:xm

(22

where G is the external temperature gradient a¥iglis the
isotherm velocity. The initial temperature profile was defined
as

T(x,00=T,+G(X—Xo) (23)
with a phase boundary at temperatEr,eseparating the solid
region (x<xgy, ¢=0) and the liquid regior(x>xq, ¢=1).
The initial solute concentration was set to the equilibrium
values in the two phases. To discretize the equations second

TABLE |. Material parameters for the Ni-Cu alloy.

Nickel Copper
T (K) 1728 1358
L (I/cr?) 2350 1728
v (cm¥mol)? 7.0 7.8
o (Jlen?) 3.7x107° 2.9x10°°
D, (cn?ls) 10°° 10°°

aAn average value of 7.4 has been taken.
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order in space and first order in time, finite-difference ap- 5000 1708
proximations were utilized. Then, an explicit scheme was
employed to advance forward in time the phase field and
concentration equations; the linear temperature equation was 4000
more conveniently integrated with a fully implicit method.
To ensure an accurate spatial resolution, the computational
domain was divided into two parts; in an inner region, (4.0
<x=<5.6) concerned with the evolution of the phase and
concentration fields, the grid spacing was selected\as
=4x10"4, which is one-half the nominal interface thick-
ness; in the outer regiofd<x<4.0; 5.6=x<9.6) only the
more diffuse temperature field changes with time; here a grid
spacing Axo=10Ax; was utilized. A time stepAt=2 1000
x 10" was required for numerical stability. To verify the
consistency of the numerical scheme, at each time step the

1 1706

3000

1704

2000

interface velocity
(1) amjeradwa) aoepIAIUL

1702

solute conservation was checked and in all the simulations it 0 . L L : . 1700
was verified within 0.001%. 0 2 4 6 8 10 12
(@ 10% t
IV. NUMERICAL RESULTS 5000 1708

The solidification process is characterized by the consti-
tutional lawsT,(v),k(v) which relate the interface tempera-
ture and the partition coefficient to the interface velocity.
The steadyT,(v) curve exhibits a nonmonotonic behavior:
due to suppression of solute partitionitand to the reduc-
tion of solute concentration on the liquid side of the inter-
face, at low velocitiesT,(v) first rises, then falls with in-
creasing reflecting the increasing undercooling required to
advance the solidification front. The loss of interface stability
is expected when the isotherm velocity is fixed in the region
of positive slope of theT,(v) curve, corresponding to the
unstable planar growth branch. Setting the solute concentra- L G H
tion in the liquid phase at...=0.070 68,T,(v) reaches its AVAVAVAVAVAV
maximum atv = 1350[13] (here and in the following, except
for temperatures, physical quantities will be expressed in di-
mensionless unijs Then we chose an isotherm velocky (b) 0%t
=700, well inside the unstable branch; the external tempera-
ture gradient was fixed & =40 K. 5000 1708

The high value of the Lewis number (k& X 107°) pre-
vents the formation of the banded structures in the Ni-Cu
alloy, forcing steady growth for every value of the isotherm 4000 |
velocity or the external temperature gradient. Then we arti-
ficially altered the thermal diffusivity of the alloy by a factor
~10?, entering the region where the crossover from the
steady to the oscillatory dynamics of the solidification front
can be studied. With this choice the thermal diffusion length
1/(LeV,) turns out to be much larger than the domain’s size;
in this respect our simulations explore the opposite limit of
the growth conditions studied by Karma and Sarkissian
[11,17], who assumed an infinite domain. Notice that in ac- 1000
tual rapid solidification experiments the domain’s size and
the thermal diffusion length are of the same orf&r

The effect of heat diffusion on the growth dynamics is 0 . ' ' . . 1700
shown in Figs. 1a)—1(c), where plots of interface velocity 0 5 4 6 8 10 2
and temperature versus time are presented for three different ©
values of the Lewis number. Figuréal refers to the frozen
temperature approximation (E€D,Dt=o); after a short
transient the initial conditions are reabsorbed and the front FiG. 1. Interface velocity(dotted ling and temperaturésolid
velocity enters an oscillatory regime around the averag@ine) versus time. The Lewis number {8 Le=0, (b) Le=6.65
value V,. Most of the time is spent at low velocity, where x1078 and (c) Le=3.12x10"’. The isotherm velocity isV,
v<Vy and the interface cools down. The high velocity por- =700 and the temperature gradigt=40 K.

4000

1706

3000

1704

2000

interface velocity
(31) eanyeroduid) 90BLIUI

1702
1000

0 : . , . ; 1700

1706

3000

1704
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1703.000 1703.0

1702.5

1702.0

interface temperature (K)

interface temperature (K)

1702.000
17015
1701.0 L ! :
4 6 8 10 12
1701.000 . . 1 : . 10° ¢
0 500 1000 1500 2000 2500 3000 FIG. 3. Interface temperature versus tineolid line). The
interface velocity dashed line is drawn using the estimation given by @&). The
isotherm velocity isVy=700 and the temperature gradieGt
FIG. 2. Cycles described by the process in tfig,¢) plane. ~ =40K. The Lewis number is :1.65< 107"

The curves refer to increasing values of the Lewis number: in the

Orde[81 to 6 we have Le0, 1;§5< 10°%, 3.30¢ 1078_1 6.60 assessed through a simple argument. As we previously men-
x1077, 1.65¢<10 7, and 3.110 ", respectively. The isotherm tioned, in our system the thermal diffusion length is much
velocity is Vo=700 and the temperature gradiéBt=40K. The  |arger than the domain’s size. Then, assuming linear tem-

vertical line indicates the isotherm velocity,; the meaning of perature profiles, energy conservation at the interface re-
pointsA,B,Cis illustrated in the text. quires

tion of the cycle {(>V,) occurs on a much shorter time T-T. T.-T. L
scale, marked by the sharp peaks of t{¢) curve. In Fig. S 1oz - vle, (29
1(b), the Lewis number is Le 6.65x10°8; the finite ther- Xi Xm=X1 X
mal diffusivity is reflected in the decrease of the maximum
velocity reached during the fast growth stage. A much moravhereT,=T(x=0;t), T,=T(x=Xq:t), andx, is thex co-
dramatical effect is observed in Fig(cl, where Le=3.12  ordinate of the solidification front. The latent heat of the
x10™": the amplitude of the oscillations decreases withalloy is indicated here with.. After a simple manipulation
time, until an asymptotical steady regime is reached. Eq. (24) gives the interface temperature as

The origin of this effect can be understood looking at Fig.
2, where we have compared the orbits described by the sys-
tem in the {T,,v) plane with different values of the Lewis Ti=— [T1(Xm— %))+ Tox, ]+
number(increasing in the order 1+6The vertical line indi- Xm m
cates the isotherm velocity,=700; on the same graph the (25
dashed line is the steady(v) curve. Curve 1 refers to the
frozen temperature approximation; for most of the cycle theThe first term on the right-hand side of E@5) gives the
interface velocity is lower thaiV, and the interface cools contribution toT, due to the external temperature profile; the
down; then the orbit traverses the steddfv) curve at point  second term is the overheating due to the latent heat released
A and with a strong acceleration reaches p8ion the stable at the interface. We observe in Fig. 2 that a temperature jump
branch. Here the interface velocity is much higher thgn  of a few tenths of a degree during the accelerating part of the
and the interface warms up; solidification is decelerated andycle is enough to prevent a stable oscillatory regime. As in
the operating point shifts t6. When the frozen temperature our systemx;(X,— X;)/Xm~Xm/4 andv~10°, we see from
approximation is relaxed, the excess of latent heat released Bty. (25) that the crossover between the oscillatory and the
the interface during acceleration has to be removed througsteady regime should be expected with the Lewis number
thermal diffusion; the mechanism becomes less effectiveanging from X 10~ to 5x 10~ . To verify the consistency
with decreasing the thermal diffusivity, reflecting in an  of the above arguments, in Fig. 3 we represent versus time
increased temperature of the interface. The effect is clearlyhe actual interface temperatugeolid line) and the estima-
recognizable in curves from 2 to 5, where the slope of theion given by Eq.(25) (dashed ling For clarity we omitted
T,(v) trajectories increases upwards during acceleration witlthe initial transient. It can be observed that the agreement
increasing the Lewis number. Correspondingly, the operatinpetween the two curves is quite satisfactory. We note also
point on the stable branch shifts froBhand approaches the that the latent heat contribution to the interface heating scales
maximum of the steadyT,(v) curve. When Le3.12 approximately as-xyLe; then we expect that the interface
X 10"’ the trajectory(curve 6 no longer reaches the stable dynamics should depend on the thermal diffusivity and the
branch, and collapses into a single point at velodigy system size only through the produgjLe. This suggestion

The quantitative effects of the latent heat diffusion can bds confirmed in Fig. 4, where the solid line represents the

X (Xm—X;) L
I( m l)—ULe.
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3500
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.
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= 2000 | = .
> £
b 5 .
(=} —_
£ 1500 [ G 25000 | .
-
1000 + .
500 0 N . \
0 10 20 30 40
0 L L L L L temperature gradient (K)
0 2 4 6 8 10 12 o .
10° FIG. 6. Oscillation frequency versus the external gradiént
t

The Lewis number is Le 1.65xX 10" 7 and the isotherm velocity is
FIG. 4. Interface velocity versus time, for two different values Vo=700.
of the Lewis number and the domain’s size. Solid line: =25
%107 the dashed line is drawn for Ee2x 10" 7. In both cases the boundary conditions imposed at the domain’s walls, and
XmLe=24; The isotherm velocity i%,=700 and the temperature the external gradient plays a central role in controlling the
gradientG=40 K. interface dynamics. In Fig. 5 we show, in tiiev plane, the
cycles computed withG=10K (curve a) and G=40K
time variation of the interface velocity for ke2.5x 10 7; (curveb). The larger slope of curvie during the acceleration
the dashed line is drawn for Ee2x 107 7. In both cases period indicates that the motion in the external gradient con-
xmLe=24; we can observe that the two curves are almostributes to a large extent to the heating of the interface; as a
indistinguishable. consequence the amplitude of the oscillations decreases with
Karma and Sarkissiafi1,17], considering an infinite do- increasingG. In Fig. 6 the oscillation frequency is repre-
main, found that the growth process is essentially driven bysented versus; we observe thaw is an increasing function
the interface overheating caused by the release of latent he&f, G, and at low frequencies scales approximately-&s.
and is almost independent of the external temperature gradi- The low frequency of the oscillations for small values of
ent. In contrast, in the frozen temperature approximationG accounts for the fact that during the high velocity section
estimates based on the continuous growth model indicatef the cycle the trajectorya) in Fig. 5 follows very closely
that the oscillation frequency should scale-a& and the the steadyT,(v) curve. As the solute relaxation across the
band spacing as-G ™. Due to the small domain’s size, in interface is not instantaneous, at high frequency the steady
our simulations the interface temperature is very sensitive t@pproximation fails to workcurve (b)]. This issue has been

discussed in more detail elsewhéfel].
1703

0.076
—_
M
N’
g
2 =
i .2
2 g
g e =
[ Q
o 2 0072
Q (=]
< Q
5 2
2 E
R= o
v
1701 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 0.068 L L .
interface velocity 4.20 4.45 4.70 4.95 5.20

FIG. 5. Effect of the external gradief® on the cycles described *

by the process in theT( ,v) plane. Curvda): G=10 K; curve(b) FIG. 7. Solute concentration profile along the growth direction.
is drawn forG=40 K. The Lewis number is l21.65<10 7 and  The isotherm velocity i8/,=700, and the temperature gradient is
the isotherm velocity i&/,=700. G=40K. The Lewis number is 2 1.65<10 ",



6172 MASSIMO CONTI PRE 58

In Fig. 7 the concentration profile is shown f@  of latent heat. According to previous results based on the
=40 K, Le=1.65<10 7. We observe that the oscillatory free-boundary model, the interface stability is increased with
dynamics of the solidification front is reflected in a periodic decreasing the thermal diffusivit+, until the oscillatory
structure of the solidified alloy. The wavelength of the behavior is suppressed and steady growth occurs. When the
banded structure has been estimated &9.0720, which is  thermal diffusion length is much larger than the domain’s
practically coincident with the expected valuer¥,/w  size, the interface heating differs from the estimations of
=0.0721. Karma and SarkissiafiLl1,12: in this limit the role of the

external temperature gradient cannot be neglected and the
V. CONCLUSIONS oscillation frequency scales asG. At low frequency, the

In summary, we addressed rapid directional solidification/"terface cor\dltlons provided by the continuous growth
using a phase-field model which accounts for both solute anfi0del describe to a good degree of accuracy the actual in-
thermal diffusion. In a region of the parameters space, théerface dynamics; at _h_lgh frequency, due to the fast transients
interface dynamics enters an oscillatory regime characterizefvolved, these conditions no longer work, and the results of
by periodic variations of the growth rate. The growth procesghe phase-field simulations deviate, to some extent, from the
is strongly affected by the interface heating due to the releasredictions of the free-boundary model.

[1] M. Zimmermann, M. Carrard, and W. Kurz, Acta Metadl7, [12] A. Karma and A. Sarkissian, Phys. Rev4E, 513(1993.

3305(1989. [13] M. Conti, Phys. Rev. 56, R6267(1997.

[2] M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz, [14] M. Conti (unpublishedl
Mater. Sci. Eng., AL34, 1278(1991). [15] O. Penrose and P. C. Fife, Physica4B 44 (1990.

[3] M. Gremaud, M. Carrard, and W. Kurz, Acta Metall. Mater. [16] S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R.
39, 1431(1991). Coriell, R. J. Braun, and G. B. McFadden, Physic&® 189

[4] W. J. Boettinger, D. Shechtman, R. J. Schaefer, and F. S. Bi- (1993,

ancaniello, Metall. Trans. AS, 55 (1984). [17] J. A. Warren and W. J. Boettinger, Acta Metall. Mat48, 689
[5] M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz, (1995.

] Acta Meta”li,""aterg‘ov 983(é923-k . prgs aqq LL8]M. Conti, Phys. Rev. E55, 701 (1097,
[6]W. W. Mullins and R. F. Sekerka, J. Appl. Phy85, [19] M. Conti, Phys. Rev. 55, 765 (1997).

(1964. _ :
. [20] G. Caginalp and W. Xie, Phys. Rev.4B, 1897(1993.
[7] (Slggg) Coriell and R. F. Sekerka, J. Cryst. Grov@h, 499 [21] G. Caginalp and J. Jones, Ann. Phg.Y.) 237, 66 (1995.
[8] G. J. Merchant and S. H. Davis, Acta Metall. Mateg, 2683 |22 A- A Wheeler, W. J. Boettinger, and G. B. McFadden, Phys.
(1990 ' Rev. A 45, 7424(1992.
[9] M. J. Aziz and T. Kaplan, Acta MetalB6, 2335(1988. [23] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys.
[10] D. A. Huntley and S. H. Davis, Acta Metall. Matetl, 2025 Rev. E47, 1893(1993.
(1993. [24] R. Willnecker, D. M. Herlach, and B. Feuerbacher, Phys. Rev.

[11] A. Karma and A. Sarkissian, Phys. Rev. L&, 2616(1992. Lett. 62, 2707(1989.



